UAM-V® Photochemical Modeling System | |||||||
|
THE VARIABLE GRID URBAN AIRSHED MODEL® (UAM-V®) SYSTEM The Urban Airshed Model® (UAM®) modeling system was developed and is maintained by Systems Applications International (SAI), a wholly owned subsidiary of ICF International. The UAM® system is the most widely used photochemical air quality model in the world today. Since SAI's pioneering attempts at photochemical air quality modeling in the early 1970s, the model has undergone nearly continuous cycles of application, performance evaluation, update, extension, and improvement. UAM-V®with its variable grid featureis a significant update to the UAM® system. The UAM-V® has been applied to both regional and urban scale domains in the United States and abroad. There are more than 200 registered users of the UAM-V® worldwide. The UAM-V® model is supported by a comprehensive modeling system for developing the inputs required by such a three-dimensional photochemical model. Such extensive use and applicationsacross many computing platforms and by organizations of widely varying expertiseexplains the system’s robustness. The UAM-V® contains pioneering technical features and capabilities. Its two-way grid nesting allows multiple urban areas to be simulated within a larger region. In addition, UAM-V® allows variable vertical layer numbers and spacing, specification of three-dimensional meteorological variables, and explicit treatment of subgrid-scale photochemical plumes. Together these features advance the understanding of ozone formation within and ozone and ozone-precursor transport between urban areas. The model’s software has been completely rewritten in modular form and includes updated deposition, plume rise, solar flux, and chemical kinetics modules. Also available for the UAM-V® is a prognostic meteorological model with four-dimensional data assimilation and a complete gridded emission inventory preparation system; both are fully compatible with the formulation of UAM-V® and the latest CB-IV chemical mechanism. The UAM-V® is often used to facilitate the identification of cost-effective regional- and urban-scale air quality management actions. Government agencies in the U. S. and Canada use, or have recently used, UAM-V® in this capacity to model:
The modeling system is also being applied to various European locales including Athens, Paris, Lyon, Milan, and the United Kingdom. Applications are underway in Latin America. To view an example of UAM-V® application results, click here. Two versions of the model are currently available: Version 1.24, which has been in use for several years and was used in the OTAG studies, and Version 1.30 that includes an updated chemical mechanism and a generalized coordinate system. Conceptual Overview of the Model The Variable grid Urban Airshed Model (UAM-V)® system is a three-dimensional photochemical grid model that calculates concentrations of pollutants by simulating the physical and chemical processes in the atmosphere. The basis for the UAM-V® is the atmospheric diffusion or species continuity equation. This equation represents a mass balance that includes all of the relevant emissions, transport, diffusion, chemical reactions, and removal processes in mathematical terms. The model is usually applied to a 48- to 72-hour periods for urban applications and 360-hour periods for some regional-scale applications during which meteorological conditions result in high concentrations of pollutants. The major factors that affect photochemical air quality include:
The UAM-V® simulates all of these processes when used to calculate ozone concentrations. When it is used to simulate carbon monoxide concentrations (or any other chemically inert pollutant), no chemical reactions are involved. The species continuity equation is solved using the following fractional steps: emissions are injected; horizontal advection/ diffusion is solved; vertical advection/diffusion and deposition is solved; and chemical transformations are performed for reactive pollutants. The UAM-V® performs these four steps during each time step. The maximum time step is a function of the grid size and the maximum wind velocity and diffusion coefficient. The typical time step is 10–30 minutes for coarse (10–40 km) grids and a few minutes for fine (1–2 km) grids. Because it accounts for spatial and temporal variations as well as differences in the reactivity of emissions, the UAM-V® is ideal for evaluating the air-quality changes from emission control scenarios. This is done by first replicating a historical ozone episode to establish a base-case simulation. Model inputs are prepared from observed meteorological, emission, and air quality data for the episode days using prognostic meteorological modeling and/or diagnostic and interpolative modeling techniques. The model is then applied with these inputs, and the results are compared with available observations to determine its performance. Once the model results have been determined to perform within prescribed levels, the same base-case meteorological inputs are combined with projected emissions (with or without specified control measures) to project air quality. Features of the UAM-V® Modeling System In 1989–1991, SAI embarked on a massive research effort to rewrite the UAM® system. The UAM-IV, adopted by the U. S. EPA in 1987 as a preferred model, was refined and enhanced through the update of the computer code and inclusion of new capabilities, algorithms, modules, and features. Some significant features of the UAM-V® are:
|